

DPGS: Degree-Preserving Graph Summarization

Houquan Zhou¹, Shenghua Liu¹, Kyuhan Lee², Kijung Shin², Huawei Shen¹ and Xueqi Cheng¹

¹Institute of Computing Technology, Chinese Academy of Sciences (ICT, CAS) ²Korea Advanced Institute of Science and Technology (KAIST)

Graphs are useful

- Graph is a powerful tool to model the connection between objects.
- Many fields
 - Protein network
 - Social network
 - Transportation network
 - ...

5.48B pages

2.45B users

300M users 12M products

Hard to store, process and analyze.

Solution: Graph Summarization.

Graphs grow larger

Graph Summarization

A novel reconstruction scheme

 $\ell_1(A, A_1) = 19.2$ KL $(A \| A_1) = 12.26$

 $\ell_1(A, A_2) = 10.67$ KL $(A \mid A_2) = 8.32$

More compact summary graphs

Lower encoding length 🗹

Save time and memory for GNN

- Save both time and memory
- Comparable performance

Fast and scalable

Scales linearly to number of edges (|E|).

Outline

- Introduction
- Our model
- Our algorithm: DPGS
- Experiments
- Conclusion

Graph Summarization

Original Graph G

Graph Summarization

Uniform Reconstruction Scheme

- Related works:
 - k-GS [LeFevre 2010]
 - SAA-Gs [Beg 2018]
 - SSumM [Lee 2020]
- Each node pair shares the same connect probability.
- Corresponding to Erdos-Renyi Random Graph Model.
- Is Erdos-Renyi Model a good null model?
 - Skewed-distributed
 - Power-law

Skewness of real-world graphs

Power-law

Configuration-based reconstruction

- Configuration model: $A'(i, j) \propto d_i d_j$.
- More specifically $A'(i,j) = \frac{d_i}{D_p} A_s(p,q) \frac{d_j}{D_q}$ • d_i : degree of node i. S2 5 4 • $D_p = \sum_{i \in S_p} d_i$. • $A_s(p,q)$: Weight of superedge (S_p, S_q) . $= d_4 +$ d_{5}

Uniform Scheme

Configuration-based scheme

Our scheme is better

 $\ell_1(A, A_1) = 19.2$ KL $(A \| A_1) = 12.26$

 $\ell_1(A, A_2) = 10.67$ KL $(A \mid A_2) = 8.32$

Degree-Preserving

Outline

- Introduction
- Our model
- Our algorithm: DPGS
- Experiments
- Conclusion

Main idea

- Basic operation: merging node together.
- Model Part Error Part
 Criterion: Size of summary graph is small, Reconstruction error is small.
 MDL (Minimum Description Length) principle.
 MDL finds a model minimizing the total description length:

$$L(M,D) = L(M) + L(D \mid M)$$

• Model *M*: Summary graph; Data *D*: Original Graph.

MDL encoding

• Error part: (generalized) KL-divergence:

$$L(D \mid M) = KL(A \mid |A') = \sum_{ij} A(i,j) \ln \frac{A(i,j)}{A'(i,j)} - A(i,j) + A'(i,j)$$

• Extra bits to encode A given A'.

Algorithm Procedure

Main Procedure:

- Initialize each node as a supernode.
- Iteration (T turns):
 - Group supernodes using LSH
 - For each group:
 - Sample supernode pairs and merge supernodes in each group
- Return summary graph
- Tips:
 - Merge nodes with similar neighborhood yield greater decrease to total description length.
 - Use LSH (Locality Sensitive Hashing) to group nodes.

Initialization

0	0	0	1	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	1	1	0	0	0
1	0	1	0	0	0	0	1	1	0
0	1	0	0	0	0	0	1	0	1
0	0	1	0	0	0	0	1	1	1
1	0	1	0	0	0	0	1	1	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	0	1	1	0	0	0
L0	0	0	0	1	10	0	0	0	0

LSH Grouping

[0	0	0	1	0	0	1	0	0	ר0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	1	1	0	0	0
1	0	1	0	0	0	0	1	1	0
0	1	0	0	0	0	0	1	0	1
0	0	1	0	0	0	0	1	1	1
1	0	1	0	0	0	0	1	1	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	0	1	1	0	0	0
L0	0	0	0	1	10	0	0	0	0

Sample pairs: (4, 7), (5, 6)

 $\arg \max \Delta L(M, D)$

Merge (4, 7)

0	0	0	2	0	0	0	0	ך0
0	0	0	0	1	0	0	0	0
0	0	0	2	0	1	0	0	0
2	0	2	0	0	0	2	2	0
0	1	0	0	0	0	1	0	1
0	0	1	0	0	0	1	1	1
0	0	0	2	1	1	0	0	0
0	0	0	2	0	1	0	0	0
L0	0	0	0	1	1	0	0	0

Merge (2, 3)

Merge (8, 9)

Merge (8, 9)

0	0	2	0	0	0	ך0
0	0	2	1	1	1	0
2	0	0	0	0	4	0
0	2	0	0	0	1	1
0	1	0	0	0	2	1
0	1	4	1	2	0	0
-0	0	0	1	1	0	0

	S1	S2	S 3
S1	0	6	0
S2	6	0	9
S3	0	9	0

Return summary graph

After T iterations

Spectral Preservation

• Theorem (Eigenvalue Perturbation)

Outline

- Introduction
- Our model
- Our algorithm: DPGS
- Experiments
- Conclusion

- Synthetic graphs using different random graph.
- 8 real-world networks (up to 100M edges).
 - Protein network.
 - Social Network.
 - Co-purchase network.

Our scheme is better than uniform scheme

- Two synthetic data: E-R model and power-law model.
- Compare encoding error L(D|M).

Uniform (blue) v.s. Configuration (red)

Our scheme can improve existing methods.

DPGS yields the most compact summary graphs

Save time and memory for GNN

Amazon2M (2.4 M nodes, 61 M edges)

Original graph (X)

Summary graph (🔽)

F1 score: 0.890¹ (orig) vs 0.870 (summ)

- Save both time and memory
- Comparable performance

Fast and scalable

Scales linearly to number of edges (|E|).

Outline

- Introduction
- Our model
- Our algorithm: DPGS
- Experiments
- Conclusion

- Introduce the configuration-based reconstruction scheme.
- Propose a novel degree-preserving graph summarization algorithm.
- Our algorithm yields more compact summary graphs.
- Our algorithms runs fast, scales linearly, and helps to train large GNN model.

Houquan Zhou

Kijung Shin

Shenghua Liu

Huawei Shen

Kyuhan Lee

Xueqi Cheng

Thank you!

Contact us ∑ <u>zhouhouquan18@mails.ucas.edu.cn</u> ∑ <u>liushenghua@ict.ac.cn</u> ∑ <u>kyuhan.lee@kaist.ac.kr</u>

https://github.com/BGT-M/DPGS

54