

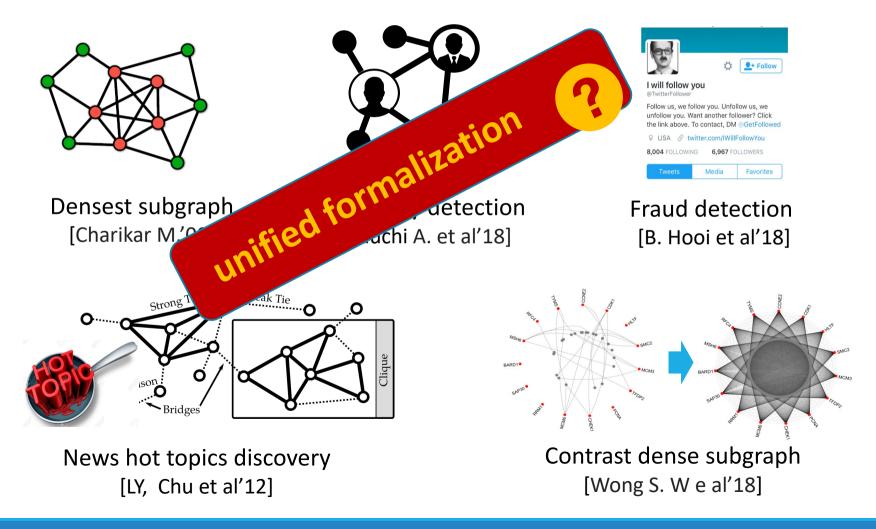
SPECGREEDY Unified Dense Subgraph Detection

<u>Wenjie Feng</u>⁺, Shenhua Liu⁺, Danai Koutra[#], Huawei Shen⁺, Xueqi Cheng⁺

+Institute of Computing Technology, ICT, CAS#University of Michigan, Ann Arbor

Motivation: Dense Subgraph Detection

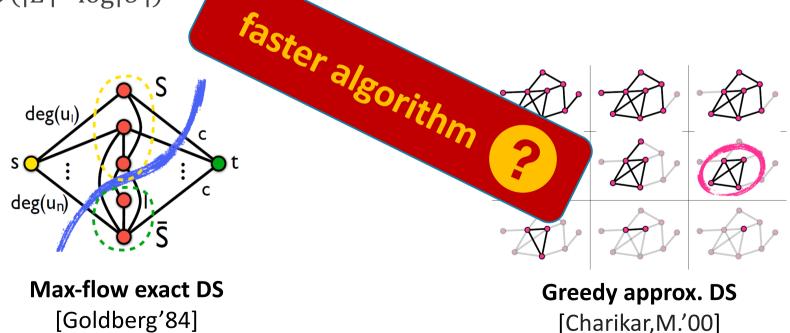
Ubiquitous applications



Motivation: Densest Subgraph Detection

Polynomial-time methods

- Exact solution: maximum flows based algo.
 - $O(|U|^2 + |U| \cdot |E|)$
- **Approx. solution**: Greedy Peeling algo. $(1/_2$ -optimal)
 - $O(|E| \cdot \log|U|)$



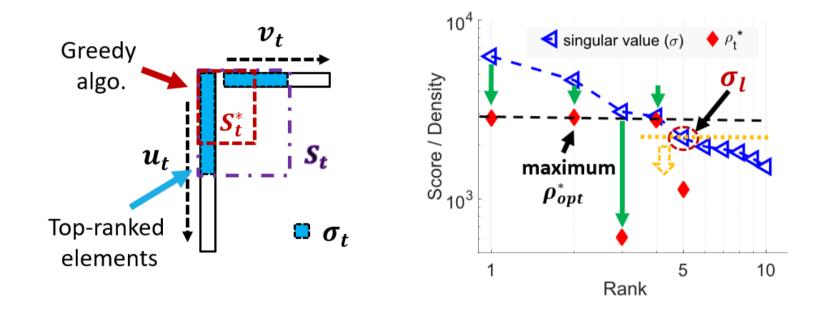
OVERVIEW-METHOD

• GENDS: a unified problem framework

 $S^* = rgmax_{S \subseteq V, |S| \geq 1} g(S; \mathbf{P}, \mathbf{Q}) = rgmax_{oldsymbol{x} \in \{0,1\}^n, |oldsymbol{x}| \geq 1}} rac{oldsymbol{x}^T \mathbf{P} oldsymbol{x}}{oldsymbol{x}^T \mathbf{Q} oldsymbol{x}}$ $\mathbf{P} = \mathbf{A} + 2\mathbf{D}_{c}$ $\mathbf{Q} = \mathbf{A}' + \gamma \mathbf{I}$ TempDS **SparseCutDS** MinQuotientCut [Wong S. W e al'18] [Miyauchi A. et al'18] [Chung RK. Fan'96] Fraudar Charikar **Risk-averse DS** [B. Hooi et al'18] [Charikar M.'00] [C. E. Tsourakakis et al'19]

OVERVIEW-METHOD

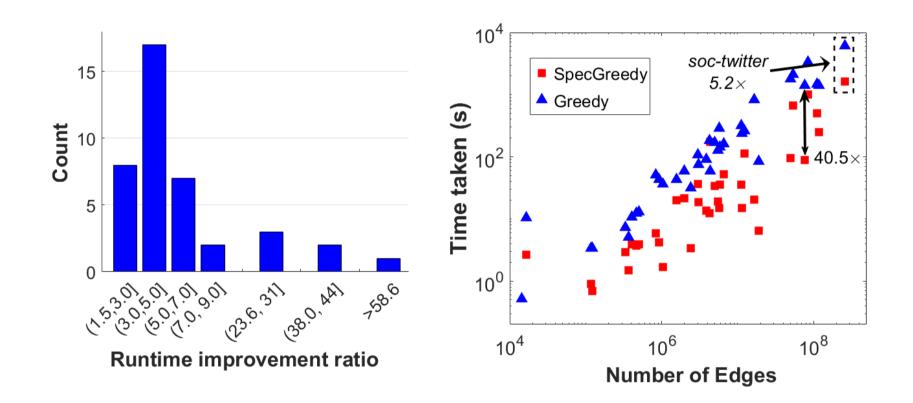
• SPECGREEDY: a unified detection algorithm



Graph spectral + Greedy approximation

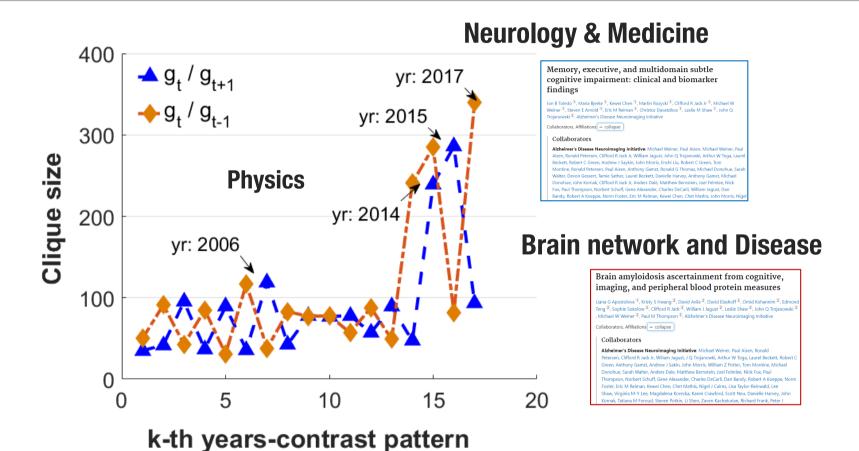
Linearly scalable with the graph size

OVERVIEW-PERFORMANCE



SPECGREEDY is faster than Greedy algo.

OVERVIEW-PERFORMANCE

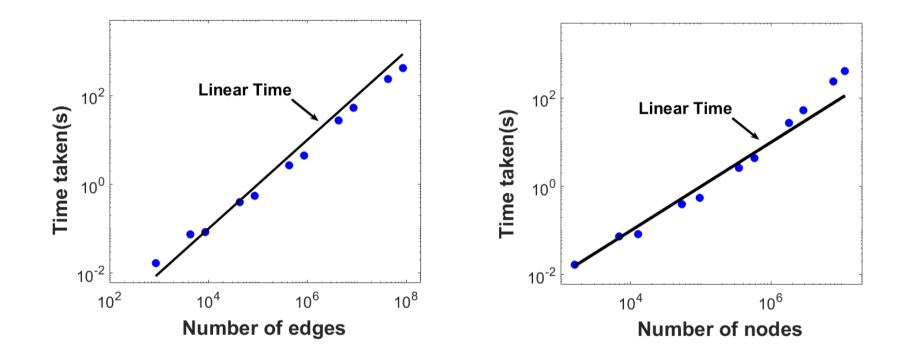


SPECGREEDY is effective, e.g. contrast dense subgraphs

SpecGreedy: Unified Dense Subgraph Detection

7/29

OVERVIEW-PERFORMANCE



SPECGREEDY is scalable

Road Map

- Introduction
- Proposed Method:
 - Unified Formulation: GENDS <<
 - Algorithm: SPECGREEDY
- Experiments
- Conclusion

10/29

GENDS: Unified Formulation

GENDS: Generalized Dense Subgraph detection

• Given:

• $\mathbf{G} = (U, E)$ and its contrast $\mathbf{G}' = (U, E')$

• matrices $\mathbf{P} = \mathbf{A} + 2\mathbf{D}_{c}$, $\mathbf{Q} = \mathbf{A}' + \gamma \mathbf{I}$ related to \mathcal{G} and \mathcal{G}' resp.

Find

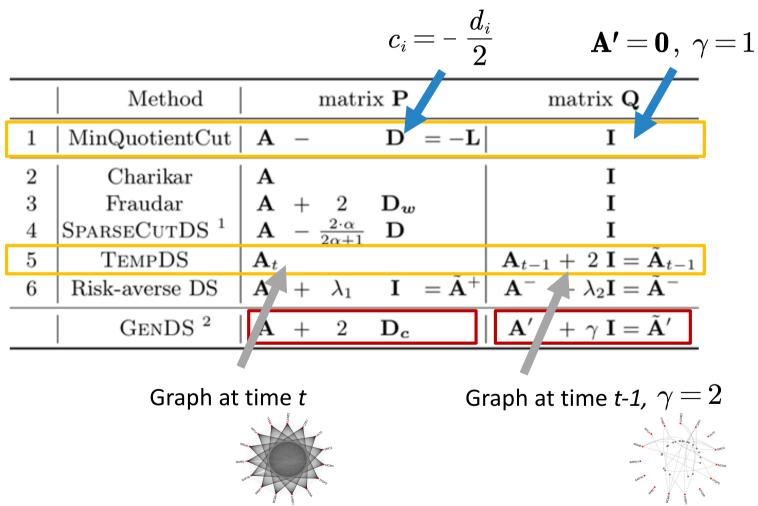
• the optimal subset $S^* \subseteq U$,

$$S^* = \underset{S \subseteq V, |S| \ge 1}{\operatorname{arg\,max}} g(S; \mathbf{P}, \mathbf{Q}) = \underset{\boldsymbol{x} \in \{0,1\}^n, |\boldsymbol{x}| \ge 1}{\operatorname{arg\,max}} \frac{|\boldsymbol{x}^T \mathbf{P} \boldsymbol{x}|}{|\boldsymbol{x}^T \mathbf{Q} \boldsymbol{x}|}$$

 \boldsymbol{x} is the indicator vector for the node subset

Problems Correspondence

• GENDS and some related instantiation problems



12/29

Theoretical Analysis

1. Graph spectral and Optimality

- Generalized *Rayleigh ratio* (quadratic optimization)
 - Positive residual graph G_r : $A_r = (P Q)^+$

•
$$R(A_r, x) = \frac{x^T A_{rX}}{x^T x}, \quad x \in \mathbb{R}^n, x \neq 0$$

• *Rayleigh-Ritz* Theorem (real space)

•
$$A_r = U\Lambda U^T, \Lambda = diag(\lambda_1, \dots, \lambda_n)$$

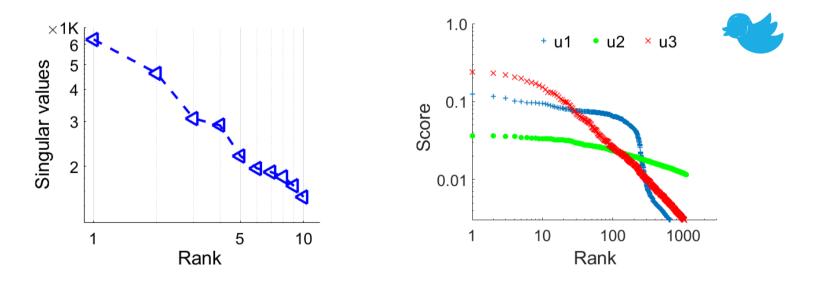
• $\lambda_k = \max_{x \neq 0, x \in S_{k-1}^{\perp}} R(\mathbf{A}_r, x) = \max_{\|x\|=1, x \in S_{k-1}^{\perp}} x^T \mathbf{A}_r x \Longrightarrow x = u_k$
• $A_r = U\Sigma V^T, \Sigma = diag(\sigma_1, \dots, \sigma_k)$
 $\sigma_1 \ge \dots \ge \sigma_k \ge 0$
 $m \left\{ \begin{array}{c} n \\ \mathbf{A_r} \end{array} \approx m \left\{ \begin{array}{c} n \\ \mathbf{A_r} \end{array} \approx m \left\{ \begin{array}{c} n \\ \mathbf{A_r} \end{array} \right\} \right\}$

13/29

Theoretical Analysis (cont.)

2. Properties of real-world large graphs

- Sparse connection
- Skew distributions (e.g., power-law)
 - degree, eigen/singular value, network values, |bipartite core| etc.



Singular values and score of singular vector elem. distribution of **soc-twitter** network

Theoretical Analysis: Optimal Solution

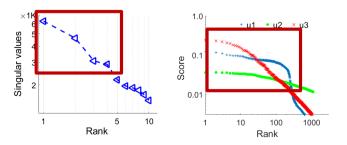
• GENDS solution for \mathcal{G}_r

$$\circ S^* = \underset{\boldsymbol{x} \in \{0,1\}^n, |\boldsymbol{x}| \ge 1}{\operatorname{arg\,max}} \frac{\boldsymbol{x}^T \mathbf{A}_r \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}} = \underset{|S| \ge 1}{\operatorname{arg\,max}} \frac{1}{|S|} \sum_{i=1}^n \sigma_i \left(\sum_{j \in S} \boldsymbol{u}_{ij} \right) \left(\sum_{j \in S} \boldsymbol{v}_{ij} \right)$$

• The optimal density of subgraph of S^* :

 $\rho_{opt} \leq \sigma_1$

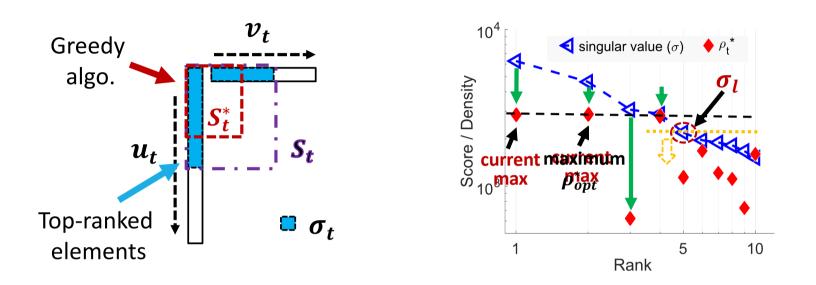
- Important parts:
 - top singular values
 - top-ranked elements in singular vectors



Road Map

- Introduction
- Proposed Method:
 - Unified Formulation: GENDS
 - Algorithm: **SPECGREEDY** <<
- Experiments
- Conclusion

Approximate Optimal Solution



- Approximation solution S_t^{*}:
 - g_t : subgraph for S_t of the trunc. t-th top singular vectors (u_t, v_t)
 - g_t^* : the densest subgraph of g_t with Greedy algo. • Density of g_t^* : $\rho_t^* \leq \sigma_t$
- S_{opt}^* approx. optimal solution for \mathcal{G}_r : $\sigma_1 > \cdots > \rho_{opt}^* \ge \sigma_l \ge \cdots$

SPECGREEDY: Unified Detection Algorithm

- Graph spectral + Greedy peeling approx.
- Main steps: (k: parameter for SVD approx.)
 - S0: construct positive residual graph \mathcal{G}_r
 - S1: A_r SVD (top-k low-rank approx.)
 - Repeat:
 - S2-1: Construct candidate S_t for truncated (u_t, v_t)
 - S2 $\left\{ = S2-2: S_t^*: \text{ densest subgraph with greedy detection for } S_t \right\}$
 - S2-3: **Update** current optimal density ρ_{opt}^* with S_t^* if needed
 - Until $\rho_{opt}^* > \sigma_{t+1}$ or t < k
 - Return $\boldsymbol{G}_{\boldsymbol{r}}(S_{opt}^{*})$

Road Map

- Introduction
- Proposed Method:
 - Unified Formulation: GENDS
 - Algorithm: SPECGREEDY
- Experiments <<
- Conclusion

Experiments on 40 networks

Baselines:

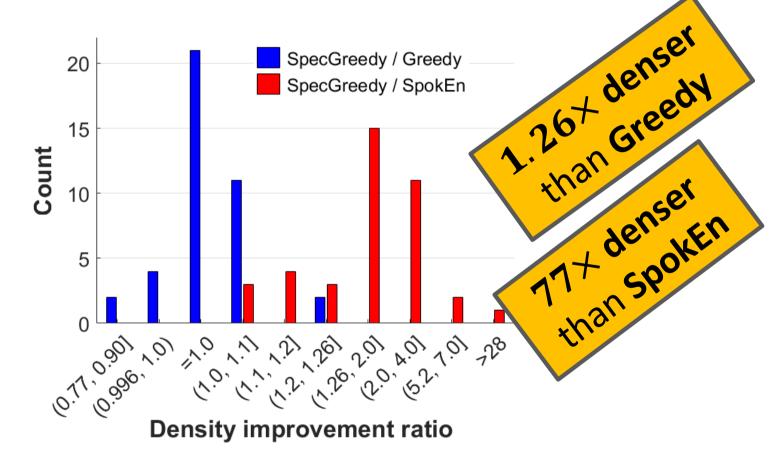
- Greedy (Charikar)
- SpokEn (SVD)
- Parameter: k = 10 for SpecGreedy

• Datasets:

- 40 real-world networks from 5 public dataset repos.
- Stanford SNAP, Network Repository, AMiner scholar, ASU' social computing, KONECT Network Collection

Exp1. Quality-Speed Test

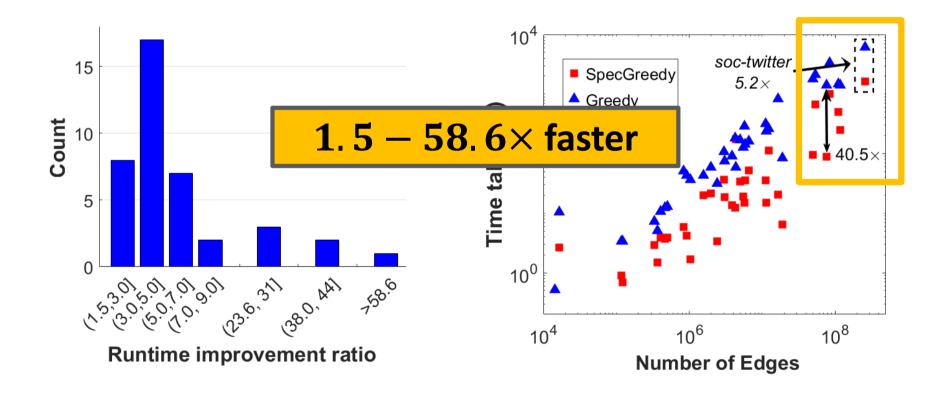
• The density of the detected densest subgraph



21/29

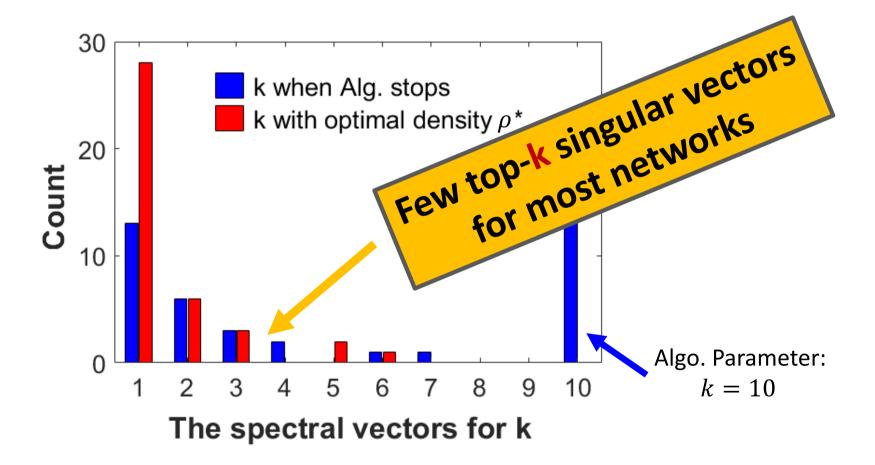
Exp1. Quality-Speed Test (cont.)

The speed-up for detecting the densest subgraph SpecGreedy vs. Greedy



Exp2. Parameter Test

Optimal graph spectral for the densest subgraph

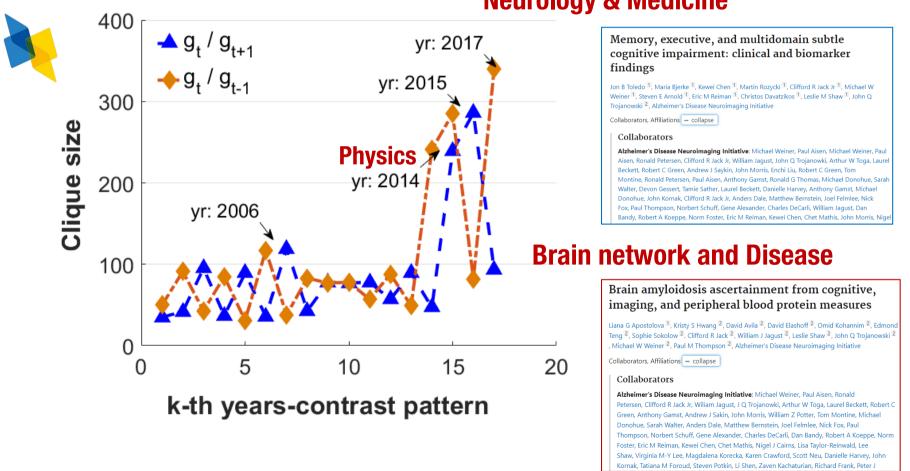


2017 vr. 300+ co-authors

23/29

Exp3. Effectiveness Test

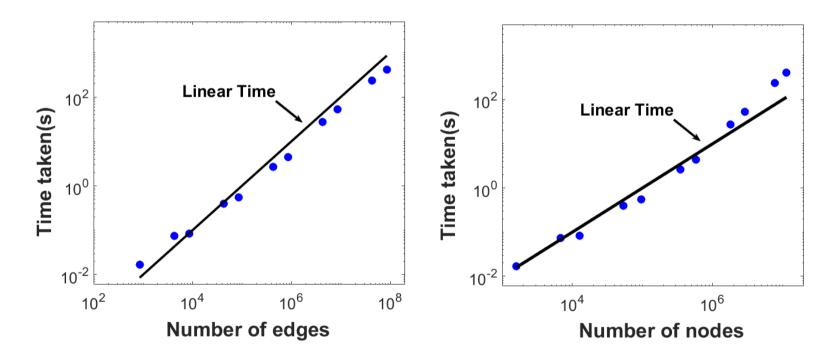
• Contrast dense subgraphs in dynamic graph



Neurology & Medicine

Exp4. Scalability Test

- Time complexity: $O(K \cdot |E| + K \cdot |E(\tilde{S})| \log|\tilde{S}|)^{\perp}$
- Linear scalable with the size of the graph



¹ \tilde{S} : max-size candidate S_t , $|\tilde{S}| \ll |S|$

24/29

Experiments

Properties of **SPECGREEDY**:

Faster: detects the high-quality the densest subgraphs faster than the Greedy algo. *Effective*: detects the contrast dense subgraph pattern in scholar co-authorship Scalable: runs linearly w.r.t graph size

Road Map

- Introduction
- Proposed Method:
 - Unified Formulation: GENDS
 - Algorithm: SPECGREEDY
- Experiments
- Conclusion <

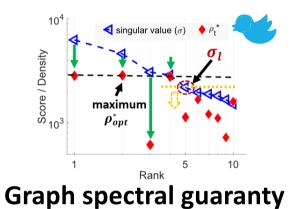
27/29

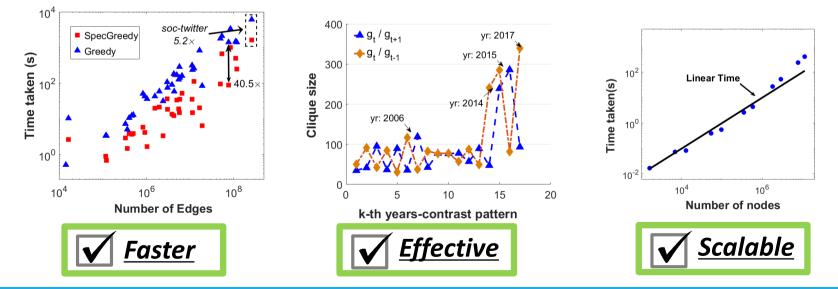
Summary

• **SPECGREEDY**: Unified Dense Subgraph Detection

Method	matrix \mathbf{P}		matrix ${\bf Q}$
MinQuotientCut [9]	\mathbf{A} –	$\mathbf{D} = -\mathbf{L}$	Ι
Charikar [6]	Α		Ι
Fraudar [14]		$\mathbf{D}_{\boldsymbol{w}}$	I
SparseCutDS ¹ [24]	A $-\frac{2\cdot\alpha}{2\alpha+1}$	D	I
TempDS [33]	\mathbf{A}_t		$\mathbf{A}_{t-1} + 2 \mathbf{I} = \tilde{\mathbf{A}}_{t-1}$
Risk-averse DS [30]	$\mathbf{A}^+ + \lambda_1$	$\mathbf{I} = ilde{\mathbf{A}}^+$	$\mathbf{A}_{t-1} + 2 \mathbf{I} = \tilde{\mathbf{A}}_{t-1}$ $\mathbf{A}^{-} + \lambda_2 \mathbf{I} = \tilde{\mathbf{A}}^{-}$
GENDS ²	A + 2	$\mathbf{D}_{\boldsymbol{c}}$	$\mathbf{A}' + \ \gamma \ \mathbf{I} = \tilde{\mathbf{A}}'$

Unified formulation (GenDS)





Thank You!

Visit our paper to learn more

Questions: wenchiehfeng.us@gmail.com

REFERENCE

- Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. FRAUDAR: bounding graph fraud in the face of camouflage. KDD 2016.
- C. E. Tsourakakis, T. Chen, N. Kakimura, and J. W. Pachocki. Novel dense subgraph discovery primitives: risk aversion and exclusion queries. ECML-PKDD, 2019.
- Fan. R. K. Chung. Spectral graph theory[B]. American mathematical soc., 1996.
- M. Charikar. Greedy approximation algorithms for finding dense components in a graph. In APPROX, 2000.
- Miyauchi, Atsushi, and Naonori Kakimura. "Finding a dense subgraph with sparse cut.", CIKM. 2018.
- R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. In WAW, 2009.
- S. Liu, B. Hooi, and C. Faloutsos. A contrast metric for fraud detection in rich graphs. TKDE, 2018.
- Y. Yang, L. Chu, Y. Zhang, Z. Wang, J. Pei, and E. Chen. Mining density contrast subgraphs. In ICDE, IEEE, 2018.
- Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. Journal of Algorithms, 2000.