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Abstract. How can we effectively detect fake reviews or fraudulent
connections on a website? How can we spot communities that suddenly
appear based on users’ interaction? And how can we efficiently find the
minimum cut in a big graph? All of these are related to the problem of
finding dense subgraphs, an important primitive problem in graph data
analysis with extensive applications across various domains.
We focus on formulating the problem of detecting the densest subgraph in
real-world large graphs, and we theoretically compare and contrast several
closely related problems. Moreover, we propose a unified framework for
the densest subgraph detection (GenDS) and devise a simple and compu-
tationally efficient algorithm, SpecGreedy, to solve it by leveraging the
graph spectral properties with a greedy approach. We conduct thorough
experiments on 40 real-world networks with up to 1.47 billion edges from
various domains, and demonstrate that our algorithm yields up to 58.6×
speedup and achieves better or approximately equal-quality solutions
for the densest subgraph detection compared to the baselines. Moreover,
SpecGreedy scales linearly with the graph size and is proved effective
in applications, such as finding collaborations that appear suddenly in a
big, time-evolving co-authorship network.

Keywords: Dense subgraph detection; Graph pattern mining; Algorithm

1 Introduction

How can we capture the most contrast groups or communities in temporal or
dynamic graphs — e.g. hot-topics or collaborations in the research community
that appear suddenly? How can we efficiently determine the minimum cut for a
large graph? How can we find the most suspicious users based on their behaviors
or spot the largest group with consensus opinion on controversial issues? All
these real-world problems are related to the densest subgraph detection task.

Dense pattern mining in graphs is a key primitive task for extracting useful
information and capturing underlying principles in relational data. It has benefited
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(a) Speedup statistic for the
densest subgraph detection

(b) Optimal densest subgraph
density quality comparison

(c) The linear scalability
of SpecGreedy

Fig. 1. Proposed algorithm SpecGreedy is fast, effective, and scalable. (a) Our
method detects the densest subgraphs (qualities in Fig. 1(b)) up to 58.6× faster than
the widely-used Greedy algorithm for various real-world datasets. (b) SpecGreedy
has better or comparable density quality compared with Greedy and SpokEn
algorithm in the densest subgraph detection. It consistently outperforms SpokEn for
all graphs and finds up to 28× denser subgraph; it obtains the same or denser (more
than 1.26×) optimal density for most graphs compared with Greedy, and 4 graphs
with very close densities (≥ 0.996×) and only 2 graphs with less than 0.9 density
improvement. (c) The time taken of SpecGreedy grows linearly with the size of graph.

various application domains [16], such as capturing the functional groups in
biology [30], traffic patterns in human behaviors and interactions [20], communities
in social networks [25], anomaly detection in financial and other networks [1],
and more. The densest subgraph problem has garnered significant interest in
practice because it can be solved exactly in polynomial-time and has an adequate
approximation in almost linear time. Goldberg’s maximum flow algorithm [13]
and Charikar’s LP-based algorithm [7] provide the exact solution, and Charikar [7]
proved that the simple greedy algorithm is guaranteed to find a result of quality
better than the factor 2-approx. with linear time to the graph size. However,
these algorithms still incur a prohibitive computational cost for the massive
graphs that arise in modern data science applications, without considering the
properties of real-world data.

To the best of our knowledge, there is no related work to study the connection
of the above problems. Here we summarize the differences and relations for some
well-known related problems, including detecting community with sparse cut and
suspicious dense subgraphs. We also propose a unified formulation, generalized
densest subgraph (GenDS) problem, which subsumes various application problems.
This unification explicitly highlights those relations in a formal way and leads to a
consistent method for solving these problems. We thus devise an efficient detection
algorithm, SpecGreedy, that leverages the graph spectral properties and greedy
peeling strategy to solve the generalized problem. With thorough experiments
using 40 diverse real-world networks, we demonstrate that our algorithm is fast,
highly effective, and scalable (linear to the number of edges, as shown in Fig. 1);
it yields 58.6× speedup, and achieves almost equal or better quality, even for
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a very large graph with 1.47B edges. We also find interesting patterns, such as
contrast collaboration dense patterns in DBLP co-authorship data.

Our main contributions include:
– Theory & Correspondences: We propose the generalized densest subgraph

detection formulation, GenDS, to unify several related problems, and analyze
the optimization in the principle of the spectral theory;

– Algorithm: We devise SpecGreedy, a fast and scalable algorithm to solve
the unified GenDS problem;

– Experiment: We conduct thorough empirical analyses of various real-world
graphs to verify the efficiency and linear-scalability of SpecGreedy. We
also find some large contrast dense subgraphs in co-authorship relations.

Reproducibility: Our open-sourced code, the data used, and the supplement
document are available at https://github.com/wenchieh/specgreedy.

2 Related Work

In this section, we summarize the related work on the densest subgraph problem
and various methods for detecting dense subgraphs in different applications.

Finding the densest subgraph in the large input graph is a widely studied
problem [16]. Generally speaking, the goal of such a problem is to find a set
of nodes of a given input graph to maximize some notion of density. The so
called densest subgraph problem (DSP) aims to find a subgraph that maximize
the degree density, which is the average of the weights of all its edges. When the
edge weights are non-negative, the densest subgraph can be identified optimally
in polynomial time by using maximum flow algorithms [13]. However, obtaining
the exact solution with maximum flow requires expensive computations despite
the theoretical progress achieved in recent years, thus making it prohibitive for
large graphs. Charikar [7] introduces a linear-programming formulation of the
problem and shows that the greedy algorithm proposed by Asashiro et al. [4]
produces a 1/2-approximation of the optimum density in linear time. [21] proposes
an optimization model for local community detection by extending the densest
subgraph problem. A recent study [5] proposes a Greedy++ algorithm to
improve the output quality of the subgraph over Charikar’s greedy peeling
algorithm [7] by drawing insights from the iterative approaches from convex
optimization. However, when the edge weight can be negative, the above problem
becomes NP-hard [27]. When restrictions on the size lower bound are specified,
the densest k-subgraph problem (DkS) becomes NP-complete [2] and there does
not exist any PTAS under a reasonable complexity assumption.

Another line of related research includes contrast graph pattern mining, which
aims to discover subgraphs that manifest drastic differences between graphs. Yang
et al. [31] proposed to detect the density contrast subgraphs which is equivalent
to mining the densest subgraph from a “difference” graph, and employed a local
search algorithm to find the solution. Tsourakakis et al. [27] focused on the
risk-aversion dense subgraph pattern for a graph with small negative weights
and extended the greedy algorithm for this case. [9] detects the k-oppositive
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Table 1. Symbols and Definitions

Symbol Definition

G = (V,E) Undirected graph with node set V and edge set E ⊆ V × V
Ĝ = (L ∪R,E) Bipartite graph with node set, L and R, and edge set E ⊆ L×R
Gr = (V,Er) Positive residual graph with node set V and residual edge set Er

x,y Indicator vector for the selected subset of nodes
u,v Eigenvector or singular vector
A,L Adjacency and Laplacian matrix of a graph
d,D Node degree vector and its diagonal matrix, di =

∑
j aij

I Identity matrix of size n× n
Dx Diagonal matrix for the vector x

cohesive groups by solving a quadratic optimization problem for signed networks.
Also, dense subgraphs are used to detect communities [8, 30] and anomaly [15,
24]. Fraudar [15] proposed to use the greedy method that incorporates the
suspiciousness of nodes and edges during optimization. SpokEn [24] utilizes
the “eigenspokes” pattern of community in the EE-plots produced by pairs of
eigenvectors of a graph, which is applied to fraud detection.

Besides, there are many works that utilize the spectral properties of the graph
to detect communities [25] and dense subgraphs [22, 3], and to partition the
input graph [10].

3 Problem and Correspondences

Preliminaries and Definitions. Throughout the paper, vectors are denoted
by boldface lowercase letters (e.g. x), matrices are denoted by boldface uppercase
letters (e.g. A), and sets are denoted by uppercase letters(e.g. S, V ). The operator
| · | denotes the cardinality of a set or the number of non-zero (nnz) elements in
a vector and ‖·‖ is the l2 norm of a vector, dxe ≡ {1, . . . , x} for brevity. Table 1
gives the complete list of symbols we use in the paper.

Consider an undirected graph G = (V,E) with |V | = n. Let S ⊆ V and E(S)
be the edges of subgraph G(S) induced by the subset S, i.e. E(S) = {eij : vi, vj ∈
S ∧ eij ∈ E}. Let A = (aij) ∈ Rn×n be the adjacency matrix of G and aij ≥ 0.

Given an indicator vector x of size n for the subset S, the average degree
density of the subgraph G(S), being the mostly used density measure for the
densest subgraph problem, is defined by Charikar [7] as

g(S) =
|E(S)|
|S|

=
1

2
· x

TAx

xTx
, x ∈ {0, 1}n, (1)

and avoids the trivial solution by limiting |x| ≥ 1. Generally, Hooi et al [15]
proposed to consider the node weight (some constant for each node) for the total
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Table 2. Summary for correspondence to problem GenDS

Method matrix P matrix Q Constraint

1 MinQuotientCut [10] A − D = −L I |x| < n

2 Charikar [7] A I

|x| ≥ 1

3 Fraudar [15] A + 2 Dw I
4 SparseCutDS1 [21] A − 2·α

2α+1
D I

5 TempDS [30] At At−1 + 2 I = Ãt−1

6 Risk-averse DS [27] A+ + λ1 I = Ã+ A− + λ2I = Ã−

GenDS2 A + 2 Dc A′ + γ I = Ã′

1 The contrast subgraph pattern [19] equals to set α = 1, and α = 1
2

is considered
in [18] for community detection.
2 Bipartite graphs can be transformed into an undirected graph as Lemma 9.

mass, the density of G(S) is

g(S) =
|E(S)|+

∑
i∈V ci

|S|
=

xTAx

2 · xTx
+
xTDcx

xTx
=

1

2

xT (A + 2Dc)x

xTx
, x ∈ {0, 1}n,

(2)
where ci ∈ R+ is the weight of node i and Dc is the diagonal matrix of the weight
vector c = [c1, . . . , cn].

In addition to dense subgraphs within a single graph, we also consider the
“contrast” patterns of cross-graphs, i.e., a subset of nodes that have significantly
different edges or edge weights in two given graphs of the same nodeset, like the
different snapshots of a dynamic graph.

Generalized Densest Subgraph Problem. Therefore, we propose a gener-
alized densest subgraph problem which subsumes various well-known formulations:

Problem 1 (GenDS: Generalized Densest Subgraph detection). Given a
graph G = (V,E) and its contrast G′ = (V,E′) with |V | = n nodes; find
the optimal subset S∗ ⊆ V and |S∗| ≥ 1 such that

S∗ = arg max
S⊆V, |S|≥1

g(S; P,Q) = arg max
x∈{0,1}n,|x|≥1

xTPx

xTQx
, (3)

where matrices P and Q are related to G and G′, that is, P = A + 2Dc

and Q = A′ + γI.

Here we define Ã′ = A′ + γI as the augmented adjacency matrix of graph G′.
The denominator in Eq. (3) simultaneously considers the size of the node subset
and the connections in the subgraph G(S). Specifically, if the contrast G′ is an
empty graph, Q degenerates to be a γ-scale identity matrix with only considering
the size of the subgraph in GenDS. Note that P also becomes an augmented
adjacency matrix of G as well if the node weights are equal, i.e., ci = c1 > 0.
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As we show in Theorem 2, our proposed GenDS problem is more general
and many dense subgraph-based formulations are special cases of it.

Theorem 2. GenDS is a general framework for the MinQuotientCut, the dens-
est subgraph detection (Charikar), Fraudar (suspicious dense subgraph), Sparse-
CutDS (dense community with sparse cut), TempDS (temporal dense subgraph),
and Risk-averse DS (consensus dense subgraph), and more.

The following remarks provide detailed instantiations of GenDS for several
problems. Table 2 summarizes the setting and provides the corresponding equation
carefully aligned to highlight the correspondences to GenDS.

Remark 3. [MinQuotientCut] The optimal quotient cut ratio problem aims at
partitioning the graph into two parts with minimum cut. Let the set of cut edges
for S be cut(S) = {(u, v) ∈ E|u ∈ S, v ∈ V \ S}, its size can be formulated as

|cut(S)| =
∑
eij∈E

aij(xi − xj)
2 = xT (D−A)x = xTLx,

where xi = 1 if i ∈ S, and xi = 0 otherwise. The cut ratio of S is |cut(S)|
min{|S|,|V \S|} .

Without loss of generality, assuming S is the smaller set compared with its

complement, we have the minimum cut ratio by maximizing −xTLx
xTx

, which

corresponds to P = −L with c = −d
2 and Q = I with A′ = 0 and γ = 1. 1

Remark 4. [Charikar] The densest subgraph detection problem as formulated in

Eq. (1) corresponds to P = A and Q = I with ignoring the constant factor.2

Remark 5. [Fraudar] The suspicious densest group detection problem treats the
weights of nodes and edges as their suspiciousness score of nodes and edges, i.e. cu
and aij measure how individually suspicious the particular node u and edge eij is
(can be determined by other information, like profile and text of content) resp. As
Eq. (2) shows, it corresponds to P = A + 2Dc and Q = I, where the numerator
xTPx is the total suspiciousness of the subgraph ignoring the constant factor.

Remark 6. [SparseCutDS] SparseCutDS finds a community that is densely
connected internally but sparsely connected to the rest of the graph, and it is
optimized by maximizing the density while minimizing the average cut size [21].
With the formulation of the cut size in remark 3, the objective to be maximized
by SparseCutDS is denoted as

gα(S) =
|E(S)| − α · |cut(S)|

|S|
=

xT
(
( 1
2 + α)A− αD

)
x

xTx
= c·

xT
(
A− 2α

2α+1D
)
x

xTx
,

where α controls the weight of the |cut(S)| term and c = 1
2 + α is a constant.

Thus, it corresponds to P = A + 2Dc with Dc = − α
2α+1D and Q = I.

1 In the other setting with Q = D, this problem is also equivalent to set P =
−D−1/2LD−1/2, i.e., the normalized Laplacian matrix of G, and Q = I.

2 [29, 23] used Ã with different γ to explore the trade-off between density and size of
final dense subgraphs with the domain-set based optimization method.
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Remark 7. [TempDS] TempDS detects dense subgraphs with nodes S appearing
at time t suddenly while having very few edges at time t− 1 [30]. Let At and
At−1 be adjacency matrices of the snapshots of a temporal graph. Thus, xTAtx
and xTAt−1x are twice the numbers of edges in corresponding subgraphs. By
considering the size of subset S, the objective of TempDS can be formulated as:

g(S) =
xTAtx

xT (At−1 + 2I)x
=

xTAtx

xT Ãt−1x
.

Remark 8. [Risk-averse DS] Given a graph G, the positive entry aij of its ad-
jacency matrix A represents the expected reward of the edge (ui, uj) and the
negative entry is opposite to the risk of the edge, the absolute value |aij | mea-
sures the strength. Then A can be written into A = A+ −A−, where A+ is
the reward network and composed of all positive edges in A, that is, its en-
try A+

i,j = max (aij , 0); and A− is the opposition risk network and its entry

A−i,j = |min (aij , 0) |.
The Risk-averse dense subgraph detection problem finds a subgraph that

has a large positive average degree and small negative average degree [27], it
is formulated in GenDS format by setting P = A+ + 2Dc with c = γ1

2 1 and
Q = A− + γ2I, where γ1, γ2 ≥ 0 control the size of the subgraph by considering
the contribution of the size of the subset S.

As for the densest subgraph detection in a bipartite graph Ĝ, it can be reduced
to the GenDS framework by converting Ĝ to be a monopartite graph as following.

Lemma 9. Given a bipartite graph Ĝ = (L ∪ R,E) with |L| + |R| = n, the
densest bipartite subgraph detection problem over Ĝ corresponds to the setting
that x = [y, z], where y ∈ {0, 1}|L|, z ∈ {0, 1}|R|, and P, Q ∈ Rn×n,

P =

[
DcL

A
2

AT

2 DcR

]
=

1

2

[
0 A

AT 0

]
+

[
DcL

0
0 DcR

]
, Q =

[
I|L| 0
0 I|R|

]
(4)

where cL and cR are the node weight vectors for the nodesets L and R respectively,
I|L| is the identity matrix of size |L| × |L|, and I|R| is similar.

To avoid the trivial solution for the weighted graph (single edge with heavy
weight), we can introduce column weights as A · diag( 1

h(1TA)
) for some function

h, e.g. h(x) = xα with α ∈ R+ or h(x) = log(x + c) (c is a small constant to
prevent the denominator becoming zero). Besides, we can use the motif-based
high-order graphs [32] to recognize more complex and interesting dense patterns.

4 Theoretical Analysis

In this section, we connect the optimization of GenDS to the graph spectral
theory, showing that we can efficiently approximate the solution by the skewness
properties of the spectrum in real-world graphs, thus guide our algorithm design.
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Given the graph G and its contrast G′, we construct a “positive residual”
graph Gr = (V,Er) with Er = {(u, v)|(u, v) ∈ E ∧ (u, v) /∈ E′}, and its adjacency
matrix is denoted as Ar = (P−Q)+. Then the densest subgraph detection in
Gr means that it maximizes the density in G while minimizes the connection in
G′. Thus, the objective function in Eq. (3) is reformulated as

S∗ = arg max
S⊆V,|S|≥1

g(S; P,Q) = arg max
x∈{0,1}n,|x|≥1

xT (P−Q)+x

xTx
= arg max

x∈{0,1}n,|x|≥1

xTArx

xTx
.

(5)
We will use this transformation in the following theoretical optimality analysis.

Consider the optimization problem with a similar form as Eq. (5) defined in
the real domain, which is formulated in the Rayleigh quotient manner, that is

R(Ar,x) =
xTArx

xTx
,x ∈ Rn, x 6= 0, (6)

where Ar ∈ Rn×n is a symmetric matrix; R(Ar, cx) = R(Ar,x) for any non-zero
scalar c. The objective of GenDS in Eq. (5) is a binary-variable special case.

The Rayleigh–Ritz Theorem [10] in the spectral theory gives the optimality
of Eq. (6) with eigenvalues of Ar ∈ Rn×n, that is,

Theorem 10 (Rayleigh–Ritz Theorem3). Let Ar be a symmetric matrix
with eigenvalues λ1 ≥ . . . ≥ λn and corresponding eigenvectors u1, . . . ,un. Then

λ1 = max
x 6=0

R(Ar,x) = max
x∈Rn,‖x‖=1

xTArx =⇒ x = u1

λn = min
x6=0

R(Ar,x) = min
x∈Rn,‖x‖=1

xTArx =⇒ x = un.
(7)

In general, for 1 ≤ k ≤ n, let Sk denote the span of u1, . . . ,uk (with S0 = 0),
and let S⊥k denote the orthogonal complement of Sk. Then

λk = max
x 6=0,x∈S⊥k−1

R(Ar,x) = max
‖x‖=1,x∈S⊥k−1

xTArx =⇒ x = uk, (8)

which means λk is the largest value of R(Ar,x) over the complement space S⊥k−1.

With the analogy of eigenvalues and singular values of matrices, the latter
achieve the optimality property that resembles those of Rayleigh quotient matri-
ces [11]. To avoid the large magnitude negative eigenvalues for the real graphs [26],
here we utilize the singular values and singular vectors instead in the following.

Let Ar = UΣVT =
∑r
i=1 σiuiv

T
i be the singular value decomposition of the

matrix Ar, the columns of U and V are called the left- and right- singular vectors
respectively, i.e., U = [u1, . . . ,ur] and V = [v1, . . . ,vr]. Σ = diag(σ1, . . . , σr) for
singular values σ1 ≥ · · · ≥ σr > 0. Then, we also have the following representation
regard to the GenDS problem,

3 The proof details of the theorem refer to [10].
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Lemma 11. The optimal solution for the GenDS in Eq. (3) can be written as

S∗ = arg max
x∈{0,1}n,|x|≥1

xTArx

xTx
= arg max

|S|≥1

1

|S|

n∑
i=1

σi

∑
j∈S

uij

∑
j∈S

vij

 (9)

where uij and vij denote the j-th element of the singular vector ui and vi
corresponding to the singular value σi resp. The optimal density value gopt ≤ σ1.

As for the bipartite graph case, given an asymmetric matrix Ar ∈ Rm×n, we
define the related quadratic optimization problem as

R(Ar;x,y) =
xTAry

xTx + yTy
, x ∈ Rm,y ∈ Rn, x 6= 0, y 6= 0. (10)

And we also obtain the following theorem that leads to a similar statement as
Theorem 10. Thus, it helps to avoid constructing the big matrix (R(m+n)×(m+n))
for the bipartite graph. The detailed proof is given in the supplement.

Theorem 12 (Bigraph Spectral). Suppose Ar is an m × n matrix, Ar =
UΣVT is its singular value decomposition. For any vector x ∈ Rm,y ∈ Rn,

σ1 = max
‖x‖=‖y‖=1

xTAry ≥ max
x 6=0,y 6=0

2 ·R(Ar,x,y) =⇒ x = u1

y = v1
. (11)

In general, for 1 ≤ k ≤ r, let SUk , SVk denote the span of u1, . . . ,uk and v1, . . . ,vk
(with SU0 = 0, SV0 = 0), then

σk = max
‖x‖=‖y‖=1

x⊥SU
k−1,y⊥S

V
k−1

xTAry ≥ max
x6=0,y 6=0

x⊥SU
k−1,y⊥S

V
k−1

2 ·R(Ar,x,y) =⇒ x = uk
y = vk

.

Therefore, given a bipartite graph Ĝ = (L ∪R,E) with the adjacency matrix
A ∈ R|L|×|R|, we will have the similar properties as Lemma 11 as

Lemma 13. For the densest bipartite subgraph detection in Fraudar with P =
diag(

[
A/2,A

T
/2
]
) and xTPx = |E(S)|, the optimal solution can be written as

S∗ = arg max
x∈{0,1}n,|x|≥1

xTPx

xTx
= arg max

y∈{0,1}|L|, z∈{0,1}|R|,|y|>0,|z|>0

R(Ar,y, z)

≤ arg max
S=δ(y)∪δ(z), |S|≥1

1

|S|
∑
i=1

σi

 ∑
j∈δ(y)

uij

 ∑
j∈δ(z)

vij

, (12)

where uij ,vij denote the j-th element of the singular vector ui and vi, and the
optimal density value gopt ≤ σ1.
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Moreover, if the matrix Q is positive definite (i.e., xQxT > 0 for any x 6= 0)
in GenDS, the Eq. (3) under the relaxation x ∈ Rn is equivalent to the gener-
alized Rayleigh quotient, its optimization reduces to the generalized eigenvalue
decomposition problem; the min-max principle provides result about the optimal-
ity similar to Theorem 10. Due to the singularity of Q in the real scenario, we
take the residual graph form Gr for approximation as discussed above.

Real-world Graph Properties. The sparsity and various power-laws are
key components of the real-world networks gathered from the world-wide-web,
social networks, E-commerce, on-line reviews, recommend systems, and more.
Those primary properties contribute to the time and space-efficient computing or
storage, and synthetically modeling the realistic networks. Various studies [12, 17]
have shown that most real-world graphs have a statistically significant power-law
distribution with degree distribution, the distribution of “bipartite cores” (≈
communities), a cutoff in the eigenvalue or singular values of the adjacency matrix
and the Laplacian matrix, etc. Also, the distribution of eigenvector elements
(indicators of “network value”) associated with the top-ranked eigenvalues of the
graph adjacency matrix is skewed [6].

Thus, based on the spectral formulation of GenDS, the skewness of singular
values and components in singular vectors of real-world graphs guarantees that we
can simply consider the top singular vectors and use a few of top-rank elements
in them to efficiently construct the candidates for dense subgraphs and detect the
optimal result, We will introduce this in more details in the following algorithm.

5 Algorithms & Complexity Analysis

In this section, we present our proposed method SpecGreedy for the generalized
densest subgraph detection problem GenDS and provide analysis for its property.

We first review the related Charikar’s peeling algorithm. It takes the entire
original graph as the starting point, then greedily removes the node with the
smallest degree from the graph, and returns the densest one among the shrinking
sequence of subgraphs created by the procedure. It is guaranteed to return a
solution of at least half of the optimum density, i.e., g∗ ≥ 1

2gopt. In addition,
using the priority tree to manage the nodes in the peeling process, the complexity
of the greedy algorithm is O(|E| log |V |).

However, the densest subgraphs usually have small sizes and are embedded in
a large graph (background), which leads to many searches and update steps to
obtain an approximation solution or even the candidates for Charikar’s algorithm.

Implications of Theoretical Analysis: Lemma 11 and 13 show the upper
bound of the optimal density, i.e., gopt ≤ σ1, and the σk is the optimal value for
the real space orthogonal to Sk−1 (k > 1) as Theorem 10 and 12; the formulation
of S∗ highlights that the real-value singular vectors provide some insight to
find the optimal densest subgraph. Thus, these nodes in S∗ will have higher
importance in the singular vectors associating with the top-ranked singular values.

Considering the skewed distribution of the elements in a singular vector,
we can construct some small nodeset candidates, which derive some subgraphs,
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Algorithm 1 SpecGreedy: General dense subgraph detection

Input: Matrix Ar of the positive residual Gr; density metric g; top approx. rank k.
Output: The densest subgraph.
1: S = ∅
2: [U, Σ,V] = SVD(Ar, k) B Top-k spectral decomposition of Ar

3: for r ← 1, . . . , k do
4: Construct the candidate node subset Sr based on ur and vr, i.e.

Sr = {i : uri >
1√
|L|
, i ∈ L} ∪ {j : vrj >

1√
|R|
, j ∈ R}

5: S∗r ← Greedy(G(Sr), g) B Greedily remove nodes to maximize the metric g.
6: if g(S∗r ) > g(S) then B g(S) = g∗cur
7: S ← S∗r
8: if g(S) > σr+1 then B Spectral early-stopping condition
9: break

10: return G(S).

with the top-ranked nodes based on the singular vectors to avoid detecting the
densest subgraph from the whole graph, that is, SC = {S1, . . . , Sk} for some
1 ≤ k < n, where the candidate Si = {j;uij > ∆L, j ∈ d|L|e} ∪ {j;vij >
∆R, j ∈ d|R|e} for the singular vectors ui and vi, ∆L and ∆R are some pre-
defined truncation thresholds; the optimal density for G(Si) is gi ≤ σi. Here we
determine the selection thresholds as ∆L = 1/

√
|L| and ∆R = 1/

√
|R| 4 based on

the re-formulation of the optimal solution in the Eq. (9) and Eq. (12).

Proposed Algorithm. Therefore, we propose SpecGreedy, which utilizes
graph spectral properties and the greedy peeling strategy to solve the GenDS
problem. Algorithm 1 summarizes our approach.

Given the adjacency matrix Ar of the positive residual graph Gr, density
metric g, and the top approximation rank k which controls the maximum size of
the candidate set. SpecGreedy finds the top-k spectral decomposition of the
matrix at first (Line 2) , then detects the possible densest subgraphs based on the
top singular vectors. In each round, it constructs the candidate subset Sr based
on the truncated singular vectors ur and vr, then uses the greedy algorithm to
search the densest subgraph for G(Sr) to maximize the density metric g. It checks
the stop condition based on the next singular value for the current optimal result
in Line 8 for early stopping.

How many subgraph candidates do we need to check? Let g∗cur be the current
detected optimal density with some off-the-shelf detection approaches, if there is
some 1 < j ≤ k satisfied that g∗cur ≥ σj , the optimal density then can be achieved
based on the singular vectors is g∗cur due to the decreasing-order of singular
values (σj > σj+1) and the aforementioned upper-bound (gi ≤ σi). Finally, the
subgraph with the optimal density is returned. It is worth mentioning that the
power-law distribution nature of the eigenvalues and singular values of real-world
graphs and the theoretical bounds of solutions (the exact or 1/2-approx. result)
for detection approaches guarantee that the size of candidates will be very small.

4 If Ar is the symmetric matrix as in Eq. (9), |L| = |R| = n and ∆L = ∆R = 1/√n.
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Besides the pre-computing top-k spectral decomposition strategy in Line 2,
we can use a lazy or online way to compute the (r + 1)-th largest spectral
decomposition result with the power method or the efficient Krylov subspace
methods such as the Lanczos method [14]. In the experiment, we adopt an
incremental decomposition way which gets the top-l singular values and singular
vectors first, and if the stop condition in Line 8 is not satisfied, then get the further
top-(l + s) singular values and vectors with step-size s. This stepwise increasing-
decomposition will continue until l + s ≥ k or the early-stopping condition holds.
Moreover, we can use other densest subgraph detection approaches in Line 5
considering the enhancement of solution, e.g. Greedy++ [5] or the LP method.

Theorem 14 (Time Complexity). The complexity of SpecGreedy algo-
rithm is O(K · |E| + K · |E(S̃)| log |S̃|) where S̃ = max|Si| Si and K is the top
approximation rank.

Ideally, K = min {k, ropt + 1} where k is the input parameter and ropt is the
rank with optimal resultant density g∗. The complexity of computing a top
eigenvector/singular vector in sparse graphs is linear, i.e., O(|E(V )|), and the
total complexity of the greedy algorithm in Line 5 is O(|E(S)| log |S|) for G(S).
Given the skewness of the top singular vectors in real-world graphs, we usually
have |S̃| � |V |, making SpecGreedy a linear algorithm in the number of edges.

6 Experiments

We design experiments to answer the following questions:

1. Q1. Efficiency: How does our SpecGreedy compare to the state-of-the-art
greedy algorithm for detecting the densest subgraph?

2. Q2. Effectiveness: How well does SpecGreedy work on real data, and
perform on detecting the contrast dense subgraph and injected subgraphs?

3. Q3. Scalability: How does our method scale with the input graph size?

Data: We used a variety of datasets (40 in total) obtained from 5 popular
network repositories, including 32 monopartite graphs and 8 bipartite ones, and 5
of them also have edge weights; the largest unweighted graph is the soc-twitter

graph with roughly 1.47B edges, while the smallest unweighted graph has roughly
14.5K edges. Multiple edges, self-loops are removed, and directionality is ignored
for directed graphs. The detailed information about those real-world networks is
provided in the supplement.

Implementations: We implemented efficient dense subgraph detection algo-
rithms for comparison. We implemented our algorithm, Greedy [7], SpokEn [24],
and Fraudar [15] in Python; SpokEn actually detects the densest subgraph only
based on the truncation of the singular vectors like our method. In all the experi-
ments, we set the parameter of top approximation rank k = 10 and l = s = 3
for SpecGreedy. We ran all experiments on a machine with 2.4GHz Intel(R)
Xeon(R) CPU, 64GB of main memory.
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(a) The densest subgraph
detection for all graphs.

(b) The statistic of spectral
vectors for k.

(c) Contrast patterns for the
DBLP co-authorship graphs.

Fig. 2. The performance of SpecGreedy for the real-world graphs. (a) SpecGreedy
runs faster than Greedy in all graphs for detecting the densest subgraph with the same
or comparable density, achieves 58.6× speedup for ca-DBLP2012 and about 3× for
the largest graph soc-twitter. (b) The statistic information about k for spectral vectors.
The densest subgraphs with optimal density g∗ are achieved in the first singular vector
for most of the datasets. The blue bars show the statistics of k when algorithm stops
given the parameter k = 10. (c) The contrast patterns for DBLP co-authorship data in
2000− 2017 with the positive residual Gr (very large cliques in 2017, 2015, and 2014).

6.1 Q1. Efficiency

To answer Q1, we apply our method SpecGreedy and the baseline Greedy on
40 unweighted networks and compare their runtime.

Fig.1(a) shows the statistical information about the runtime improvement
ratio of SpecGreedy compared with the Greedy algorithm for detecting the
densest subgraphs; Fig.2(a) illustrates more detailed information about the time
taken of the two methods: for each network dataset, it provides the runtime of
the two methods and the network size.

Observation: Our method runs faster than Greedy and achieves the same
or comparable optimal densities as shown in Fig.1(b). Among these varied-size
datasets, SpecGreedy achieves 3.0-5.0× speedup for 17 of them, 1.5-3.0× for 8,
and 5.0-7.0× for 7 graphs, and more than 58.6× for the ca-DBLP2012 graph. As
we can see, SpecGreedy is efficient for large graphs, e.g. 30× for ca-DBLP-NET,
25× for cit-Patents, and 3× speedup for soc-twitter.

For the 5 weighted graphs, we observe similar results as above. SpecGreedy
achieves 24-39× speedup for 3 of them and 11-17× for the rest. Greedy will
have poor performance for the graph dominated by few edges with heavy weights
due to it needs to peel each edge of the whole graph.

Fig. 2(b) summarizes the statistics about spectral vectors k for obtaining
the optimal density g∗ and actual k when the algorithm stops. Larger k means
taking more time for SVD and detection candidate subgraphs. We can see that
the densest subgraphs with optimal density g∗ are achieved in the first spectral
vector for most of the datasets, the second one for 6 of the graphs, and only 3
graphs need to check more than 5 singular vectors. There are 26 graphs where
SpecGreedy stops for the early-stopping condition, while the rest need to check
all 10 singular vectors due to the small optimal density or flat power-law factor of
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singular values. Besides, we find that some subgraphs detected based on the top
k − 1 vectors also cliques with a smaller size than the optimal one. So, the above
heuristic observation and the power-law distribution of singular values contribute
to the efficiency of SpecGreedy, and the small k is enough for good results.

6.2 Q2. Effectiveness

In this section, we verify that SpecGreedy detects high-quality densest sub-
graphs in real-world graphs and accurately detects injected subgraphs with
different injection density. Moreover, focusing on a large-scale collaboration net-
work, we show that SpecGreedy also finds significant contrast dense subgraphs.

Density Improvement. Following the setup we described in Q1, Fig. 1(b) shows
the improvement ratio of optimal densities found by SpecGreedy compared to
the Greedy and SpokEn algorithm. As we can see, SpecGreedy consistently
outperforms SpokEn by detecting denser densest subgraphs for all real-world
datasets. It even achieves more than 28.3× higher density for the soc-twitter

graph, Also, SpecGreedy obtains the same or denser (more than 1.26×) optimal
density for most graphs compared with Greedy; there are 4 graphs that the
optimal densities detected by SpecGreedy have less than but very close (≥
0.996×) densities as detected by Greedy, and 2 graphs with less than 0.9 density
improvement. So, utilizing the spectral distribution of the densest subgraph,
SpecGreedy can improve the quality of solution of Greedy in most cases due
to avoid arbitrary ties-break in graphs for removing in Greedy to some extent.

Injection Detection. We further evaluate the performance of SpecGreedy
by performing a synthetic experiment where we inject dense subgraphs as ground
truth. For a more realistic setting, we also added extra edges as ‘camouflage’
between the nodes in the selected injection subgraph and the remaining unselected
nodes. We compared SpecGreedy, Greedy and SpokEn in terms of F measure
in detecting the injected patterns, and reports the averaged F-score over 5 trials.
Specifically, we injected a 600× 600 subgraph with different injection densities to
an amazon-Art review subgraph of size 4K × 4K, and we select the two different
cases with background densities 2.7E-5 and 3.4E-5 for comparison. From the
result, we observe that SpecGreedy achieves equally high accuracy as Greedy
and is better than SpokEn, the detailed figures are provided in the supplement.

Case study. As a case study, we also apply SpecGreedy on the DBLP co-
authorship data [28] from 2000 to 2017 to identify interesting contrast dense
patterns. Fig. 2(c) shows the contrast dense subgraphs pattern detected by
SpecGreedy with constructing the positive residual graphs Gr. Those densest
contrast subgraphs are all cliques of different sizes, which means the connections
that form a clique only appear in Gt rather than Gt−1 (or Gt+1). As we can
see, there are 3 extremely large cliques for 2017, 2015, and 2014, related to
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the publications in ‘Brain network and Disease’, ‘Neurology and Medicine’, and
‘Physics’ from some large collaborative groups of different disciplines.

6.3 Q3. Scalability

Figure 1(c) shows the linear scaling of SpecGreedy’s running time in the number
of edges of the graph. Here we used the ca-Patents-AM graph and randomly
subsampled different proportions of the edges from it for detecting the densest
subgraph. The slope parallel to the main diagonal indicates linear growth.

7 Conclusions

In this paper, we propose the generalized densest subgraph detection, GenDS,
which unifies several well-known instances of related problems. We devise the
SpecGreedy algorithm to solve the generalized problem based on graph spectral
properties and a greedy peeling approach. Our main contributions are as follows.
– Theory & Correspondences: We propose the unified formulation for the

densest subgraph detection from different applications, and analyze our
proposed optimization problem by leveraging spectral theory.

– Algorithm: We devise a fast algorithm, SpecGreedy, to solve the GenDS.
– Experiments: The efficiency of SpecGreedy is verified on 40 real-world

graphs. SpecGreedy runs linearly with the graph size and is effective in
applications, like finding sudden bursts in research co-authorship relationships.
The quality guaranteed detection algorithm design and streaming graphs

adaptation are also possible extension directions for this work.
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