

A Provable Framework of Learning Node Embeddings via Graph Summarization

Houquan Zhou¹, Shenghua Liu¹, Danai Koutra², Huawei Shen¹, Xueqi Cheng¹

Institute of Computing Technology, Chinese Academy of Sciences

² University of Michigan

Outline

Introduction

- Theory & Framework
- Experiments
- Conclusion

Graphs are everywhere

Social Network

Protein Interaction Network

Money Transaction Network

Graphs are widely used to represent relationship between objects in various domains.

Node Embedding

- Node embedding is a fundamental problem in graph mining.
- Node embedding methods map each node in graphs to a lowdimensional vector, called embeddings.
- Embeddings can capture structural information of nodes.
- Embeddings can be used in subsequent tasks, e.g., node classification, link prediction, anomaly detection, etc.

Scalability

• As the network size goes larger, the scalability of embedding learning methods is a key challenge.

Framework of learning embeddings via graph summarization

• S1: Summarize original graphs G to smaller summary graphs G_s (typically by merging nodes into supernodes)

 E_{s}

- S2: Learn embeddings on summary graphs (faster due to the smaller size)
- S3: Restore to original embeddings (typically copy)
- S4: (Optional) Refine the embeddings

Summarization for learning embeddings

• HARP '18 • MILE '18

• GraphZoom '20

 They summarize input graphs and restore embeddings empirically, and do not investigate the underlying mechanism.

Question

- What is the connection between embeddings learned on original graphs and summary graphs?
- Can we find out the theoretical connection between them?

Main Contributions

- We give theoretical analysis about learning node embeddings via graph summarization.
- Three node embedding methods: DeepWalk, LINE and GCN.
- Answer two questions:
 - How should we summarize the input graph?
 - How should we restore original embeddings from summary embeddings?

Main Contributions

• We propose a framework, GELSumm, to learn node embeddings via graph summarization.

10

Main Contributions

• GELSumm can learn high-quality embeddings with less time. Up to 8.78x faster with 2.34%

Table 3: Node classification results(DeepWalk & LINE). Average running times and accuracy **cores** over 10 runs are reported. "orig" represents the results on original graphs. *r* stands for the relative node size. The running time includes the summarization time, the embedding learning time and the refinement time. It can be observed that GELSUMM-DeepWalk and GELSUMM-LINE obtain better results than original DeepWalk and LINE using much less time.

			DeepWalk			LINE			
		orig	r=0.6	r=0.4	r=0.2	orig	r=0.6	r=0.4	r=0.2
Cora	acc (%)	72.11	73.29	73.87	74.67	68.27	66.37	65.63	68.79
	time (secs)	107.274	59.452	39.334	17.255	14.246	9.313	6.233	3.172
Citeseer	acc (%)	46.24	48.87	48.61	49.08	41.36	44.81	45.15	46.13
	time (secs)	111.022	67.802	42.414	12.641	16.991	7.885	5.305	3.376
Pubmed	acc (%)	72.35	73.31	73.93	74.05	68.51	69.74	71.40	69.86
	time (secs)	875.838	523.848	359.602	175.897	112.067	65.563	50.331	31.578
Flickr	acc (%)	53.19	53.36	53.02	52.87	51.47	52.42	52.26	50.72
	time (secs)	6142.00	3203.27	2095.68	1439.87	528.04	270.05	168.74	92.12
· · · · · ·						•			,

Outline

- Introduction
- Theory & Framework
- Experiments
- Conclusion

Kernel matrix

- Analyzed methods: DeepWalk, LINE, and GCN
- To analyze them simultaneously, we first unify them with the following kernel matrix form:

Main conclusion: Kernel matrix approximation

- Learning embeddings on original graphs: $\,\mathcal{K}(\mathcal{G})\,$
- Learning embeddings on summary graphs: $\mathcal{K}(\mathcal{G}_s)$
- We prove the following relationship between them:

$$\begin{split} \mathcal{K}(\mathcal{G}) &\coloneqq \left(\mathbf{D}^{-c} \mathbf{A} \mathbf{D}^{-1+c}\right)^{\tau} \mathbf{D}^{1-2c} \\ &\approx \left(\mathbf{D}^{-c} \mathbf{A}_{r} \mathbf{D}^{-1+c}\right)^{\tau} \mathbf{D}^{1-2c} = \mathcal{K}(\mathcal{G}_{r}) = \mathbf{R} \mathcal{K}(\mathcal{G}_{s}) \mathbf{R}^{\mathrm{T}} \\ & \swarrow \\ & \mathsf{R}(i,p) = \begin{cases} \left(\frac{d_{i}}{d_{p}^{(s)}}\right)^{1-c} & \text{if } v_{i} \in \mathcal{S}_{p} \\ 0 & \text{otherwise,} \end{cases} \end{split}$$

• Detailed proof can be found in the paper.

Proof: Reconstructed graph

- Detailed connection between supernodes are lost.
- Reconstruct edges according to a predefined scheme.
- Use the configuration-based reconstruction in our analysis.

Proof: Reconstructed graph

 Configuration-based reconstruction is based on the configuration random graph model used in modularity[Newman 2010]

Proof: Reconstructed graph

Proof: Kernel matrix approximation

Make A and A_r close.

Detailed proof can be found in the paper.

GELSumm for DeepWalk & LINE

- c = 1: DeepWalk and LINE.
- Original embeddings E can be approximated by RE_s .

$$egin{aligned} \mathcal{K}(\mathcal{G}) &= \left(\mathbf{D}^{-1}\mathbf{A}
ight)^{ au}\mathbf{D}^{-1} pprox \left(\mathbf{D}^{-1}\mathbf{A}_{r}
ight)^{ au}\mathbf{D}^{-1} \ &= \mathbf{R}\left(\mathbf{D}_{s}^{-1}\mathbf{A}_{s}
ight)^{ au}\mathbf{D}_{s}^{-1}\mathbf{R}^{\mathrm{T}}\,, \end{aligned}$$

if $v_i \in S_p$ otherwise.

 $\mathbf{R}(i,p) = \begin{cases} 1 \\ 0 \end{cases}$

where

Theorem 1. Embeddings learned by DeepWalk on the original graph \mathcal{G} , \mathbf{E} , can be approximated by embeddings learned by DeepWalk on the summary graph \mathcal{G}_s , \mathbf{E}_s , using the restoration matrix \mathbf{R} in (10), i.e.,

$$\mathbf{E} \approx \mathbf{R} \, \mathbf{E}_s \tag{13}$$

Interpretation: Supernode embeddings copied to node embeddings.

(14)

GELSumm for GCN

•
$$c = \frac{1}{2}$$
: GCN.

• Original embeddings E can be approximated by RE_s .

$$\begin{split} \mathcal{K}(\mathcal{G}) &= \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \approx \mathbf{D}^{-\frac{1}{2}} \mathbf{A}_r \mathbf{D}^{-\frac{1}{2}} \\ &= \mathbf{R} \left(\mathbf{D}_s^{-\frac{1}{2}} \mathbf{A}_s \mathbf{D}_s^{-\frac{1}{2}} \right) \, \mathbf{R}^{\mathrm{T}} \,, \end{split}$$

where

$\mathbf{R}(i \ n) = \int \sqrt{\frac{d_i}{d_n^{(s)}}}$	if $v_i \in \mathcal{S}_p$
$\mathbf{U}(v,p) = \begin{cases} v & p \\ 0 \end{cases}$	otherwise.

Theorem 2. Embeddings learned by GCN on the original graph \mathcal{G} can be approximated by embeddings learned by GCN on the summary graph \mathcal{G}_s with initial features $\mathbf{X}_s \coloneqq \mathbf{R}^T \mathbf{X}$, using the restoration matrix \mathbf{R} defined in (12), in a least-square approximation perspective:

 $\mathbf{E} pprox \mathbf{R} \mathbf{E}_{a}$

• Label of supernodes: majority vote. $label(S_p) = argmax_l |\{v_i | v_i \in S_p, label(v_i) = l\}|$ Detailed proof can be found in the paper.

GELSumm Framework

Four steps

- S1: Summarization. Using DPGS_[Zhou2021], a configuration-based summarization method.
- S2: Learn embeddings.
- S3: Restore the embeddings using *R* matrix.
- S4: Refinement using a low-pass filter $(\tilde{D}^{-\frac{1}{2}}A\tilde{D}^{-\frac{1}{2}})^{k}$ [Deng2020].

Outline

- Introduction
- Theory & Framework
- Experiments
- Conclusion

Settings

Datasets

- Citation networks: cora, citeseer, pubmed
- Social networks: flickr, reddit
- Co-purchase network: amazon2M
- Baselines:
 - HARP
 - MILE
 - GraphZoom
- Summarization ratios: [0.6, 0.4, 0.2]

GELSumm for DeepWalk & LINE

• GELSumm can learn high-quality embeddings with less time (up to 8.78x).

Table 3: Node classification results(DeepWalk & LINE). Average running times and accuracy scores over 10 runs are reported. "orig" represents the results on original graphs. *r* stands for the relative node size. The running time includes the summarization time, the embedding learning time and the refinement time. It can be observed that GELSUMM-DeepWalk and GELSUMM-LINE obtain better results than original DeepWalk and LINE using much less time.

			DeepWalk			LINE			
		orig	r=0.6	r=0.4	r=0.2	orig	r=0.6	r=0.4	r=0.2
Cora	acc (%)	72.11	73.29	73.87	74.67	68.27	66.37	65.63	68.79
	time (secs)	107.274	59.452	39.334	17.255	14.246	9.313	6.233	3.172
Citeseer	acc (%)	46.24	48.87	48.61	49.08	41.36	44.81	45.15	46.13
	time (secs)	111.022	67.802	42.414	12.641	16.991	7.885	5.305	3.376
Pubmed	acc (%)	72.35	73.31	73.93	74.05	68.51	69.74	71.40	69.86
	time (secs)	875.838	523.848	359.602	175.897	112.067	65.563	50.331	31.578
Flickr	acc (%)	53.19	53.36	53.02	52.87	51.47	52.42	52.26	50.72
	time (secs)	6142.00	3203.27	2095.68	1439.87	528.04	270.05	168.74	92.12

GELSumm for GCN

• For GCN, the performance drops slightly.

Table 5: Node classification results (GCN) on five datasets. "orig" represents the results on original graphs. Using proposed GELSUMM restoration method yields consistently better results than empirically restoration method.

		Cora	Citeseer	Pubmed	Flickr	Reddit
	acc(%)	80.20	69.70	78.02	52.89	94.55
orig	time(secs)	1.92	2.49	5.22	30.77	476.31
r = 0.6	GELSumm acc(%)	80.90	70.46	77.38	50.15	93.62
	Empirical acc(%)	80.64	69.94	76.88	48.75	92.55
	time(secs)	1.232	1.4	1.91	22.42	345.72
r = 0.4	GELSumm acc(%)	77.76	67.62	76.98	49.80	93.11
	Empirical acc(%)	77.40	66.18	76.6	48.76	87.91
	time(secs)	1.14	1.28	1.65	87.91	292.44
r = 0.2	GELSumm acc(%)	75.22	67.64	73.92	49.51	91.90
	Empirical acc(%)	75.24	67.64	73.72	46.15	87.97
	time(secs)	1.01	1.12	1.33	13.16	253.26

Comparison to baselines

• Better or comparable performance with similar or less time.

Large dataset: amazon2M

- (a) Deepwalk-0.2 ac- (b) DeepWalk-0.1 ac- (c) LINE-0.2 accu- (d) LINE-0.1 accu- (e) GCN-0.2 accu- (f) GCN-0.1 accuracy: curacy: 0.7441 curacy: 0.7757 racy: 0.7597 racy: 0.7586 racy: 0.8389 0.8321
 - Plot some node embeddings using t-sne.
 - Nodes from different class are well-separated ⇒ high-quality embeddings.

Outline

- Introduction
- Theory & Framework
- Experiments
- Conclusion

Summary

• Study the problem of learning node embeddings via graph summarization and propose a framework GELSumm.

Properties

- Theoretical-grounded
- Flexible
- Effective
- Future work
 - More graph mining problems
 - More general kernel form

Thank You!

- Email: zhouhouquan18z@ict.ac.cn
- Code: https://github.com/BGT-M/GELSumm

References

- Qiu, Jiezhong, et al. "Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec." *Proceedings of the eleventh ACM international conference on web search and data mining*. 2018.
- Zhou, Houquan, et al. "DPGS: degree-preserving graph summarization." Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). Society for Industrial and Applied Mathematics, 2021.
- Newman, M. Networks: An Introduction. OUP Oxford, 2010.
- Deng, Chenhui, et al. "GraphZoom: A Multi-level Spectral Approach for Accurate and Scalable Graph Embedding." International Conference on Learning Representations. 2019.